

Santa Barbara, CA, USA, 19th August 2016 Cryptographic Hardware and Embedded Systems

A High Throughput/Gate AES Hardware Architecture by Compressing Encryption and Decryption Datapaths

-Toward Efficient CBC-Mode Implementation

<u>Rei Ueno</u>¹, Sumio Morioka², Naofumi Homma¹, and Takafumi Aoki¹

¹ Tohoku University and ² NEC Central Laboratories

Outline

- Introduction
- Related works
- Proposed architecture
- Performance evaluation
- Concluding remarks

AES hardware architectures

Time for one block encryption

AES hardware architectures

Time for one block encryption

AES hardware architectures

Time for one block encryption

Practical applications

- Block-chaining modes
 CBC, CMAC, and CCM...
- Both encryption and decryption operations

Issue on block-wise pipelining

- State-of-the-art AES hardware achieves 53Gbps, but works only on ECB or CTR mode [Mathew+ JSSC2011]
- □ Higher throughput ≠ Lower-latency

Most area-time efficient AES HW architecture
 Achieve lowest-latency with tower-field inversion

Can perform CBC mode most efficiently

- Support both encryption and decryption
- Unified on-the-fly key scheduling datapath

Results

Logic synthesis with three standard CMOS technologies

- 44-72% higher throughput/gate than conventional ones
- Power estimation using gate-level dynamic simulation
 - Lowest-energy than ever before

Outline

Introduction

- Related works
- Proposed architecture
- Performance evaluation
- Concluding remarks

Conventional architecture 1/2 [Lutz+, CHES 2002]

- Enc and Dec datapaths with additional selectors
 - Overhead of selectors for unification is nontrivial
 - False paths appear

www.chesworkshop.org/ches2002/presentations/Lutz.pdf

Conventional architecture 2/2 [Satoh+, AC 2001]

Tower-field implementation

- Inversion should be performed over tower-field
 - Tower-field inversion is more efficient than direct mapping (e.g., table-lookup)
- Two types of tower-field implementation
 - **D** Type-I: only inversion is performed over tower-field
 - □ Type-II: all operations are performed over tower-field

	Inversion (S-box)	MixColumns InvMixColumns
Type-I	Good	Good
Type-II	Better	Bad

Outline

- Introduction
- Related works
- Proposed architecture
- Performance evaluation
- Concluding remarks

Overall architecture

Round function part

- Compress encryption and decryption datapaths by register-retiming and operation-reordering
 - Unify inversion circuits in encryption and decryption
 - Without any additional selectors (i.e., overheads)
 - Merge linear operations to reduce gates and critical delay
 - Affine/InvAffine and MixColumns/InvMixColumns
 - At most one linear operation for a round
- Type-II tower-field implementation
 - Isomorphic mappings are performed at data I/O
 - Lower-area tower-field (Inv)Affine and (Inv)MixColumns

Resister-retiming and operation-reordering

Key tricks (of decryption)

Key tricks (of decryption)

Decompose InvSubByte to InvAffine and Inversion

Register-retiming to initially perform inversion in round operations

Key tricks (of decryption)

- Merge linear operations as Unified affine⁻¹
 - InvAffine and InvMixColumns
- Distinct AddRoundKey to avoid additional selectors or InvMixColumns

Resulting datapath

Most area-time efficient inversion circuit [CHES 2015]

	Area [GE]	Timing [ns]	Power [uW]	AT product	PT product
Table look-up	1,209.50	0.66	86.9	798.27	57.35
Satoh+, AC 2001	212.25	2.53	35.0	536.99	88.55
Canright, CHES 2005	175.97	2.49	35.6	438.17	88.64
Nekado+, IWSEC 2012	205.81	1.62	33.1	333.41	53.62
Ueno+, CHES 2015	170.00	1.42	19.3	243.10	27.60

Technology: TSMC 65-nm standard CMOS Power estimation by gate-level timing simulation at 10MHz

Overall architecture

Key scheduling part

- Round key generator is dominant
 - Unify encryption and decryption datapaths
 - Shorten critical delay than round function part by NOT unifying some XOR gates

Outline

- Introduction
- Related works
- Proposed architecture
- Performance evaluation
- Concluding remarks

Performance evaluation

Logic synthesis with area optimizations
 Logic synthesis: Design Compiler

Include on-the-fly key scheduler

	Area (GE)	Latency (ns)	Max. freq. (MHz)	Throughput (Gbps)	Efficiency (Kbps/GE)
Satoh et al.	13,671.75	78.10	140.85	1.64	119.88
Lutz et al.	20,380.50	68.50	145.99	1.87	91.69
Liu et al.	12,538.75	85.25	129.03	1.50	119.75
Mathew et al.	20,639.50	97.68	112.61	1.31	63.49
This work	15,242.75	46.97	234.19	2.73	178.78

All architectures were implemented in round-based manner

Performance evaluation

Logic synthesis with area optimizations
 Logic synthesis: Design Compiler

Include on-the-fly key scheduler

	Area (GE)	Latency (ns)	Max. freq. (MHz)	Throughput (Gbps)	Efficiency (Kbps/GE)
Satoh et al.	13,671.75	78.10	140.85	1.64	119.88
Lutz et al.	20,380.50	68.50	145.99	1.87	91.69
Liu et al.	12,538.75	85.25	129.03	1.50	119.75
Mathew et al.	20,639.50	97.68	112.61	1.31	63.49
This work	15,242.75	46.97	234.19	2.73	178.78

All architectures were implemented in round-based manner

Our architecture achieved highest efficiency

Power consumption estimation

Power estimation by Power Compiler

Gate-level dynamic simulation calculating switching activities with glitch effects

	Power [mW] @ 10 MHz	PT product	
Satoh et al.	4.05	316.31	
Lutz et al.	3.43	234.96	
Liu et al.	4.51	384.48	
Mathew et al.	5.49	536.26	
This work	2.76	129.63	
	-20%		-45%

Our architecture achieved lowest power and power-time (PT) product

Concluding remarks

Most area-time efficient AES HW architecture

- 44-72% higher throughput/gate efficiency compared to conventional ones
- Lowest-energy by Power Compiler with gate-level timing simulation

Future works

- Post-synthesis evaluation
- Efficient side-channel-resistant architecture